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Exercise 17

Find the solution of the Cauchy-Poisson problem (Debnath 1994, p. 83) in inviscid water of
infinite depth which is governed by

φxx + φzz = 0, −∞ < x <∞, −∞ < z ≤ 0, t > 0,

φz − ηt = 0,

φt + gη = 0

}
on z = 0, t > 0,

φz → 0 as z → −∞.
φ(x, 0, 0) = 0, and η(x, 0) = Pδ(x),

where φ = φ(x, z, t) is the velocity potential, η(x, t) is the free surface elevation, and P is a
constant.
Derive the asymptotic solution for the free surface elevation as t→∞.

Solution

The PDEs for φ and η are defined for −∞ < x <∞, so we can apply the Fourier transform to
solve them. We define the Fourier transform with respect to x here as

Fx{φ(x, z, t)} = Φ(k, z, t) =
1√
2π

ˆ ∞
−∞

e−ikxφ(x, z, t) dx,

which means the partial derivatives of φ with respect to x, z, and t transform as follows.

Fx

{
∂nφ

∂xn

}
= (ik)nΦ(k, z, t)

Fx

{
∂nφ

∂zn

}
=
dnΦ

dzn

Fx

{
∂nφ

∂tn

}
=
dnΦ

dtn

Take the Fourier transform of both sides of the first PDE.

Fx{φxx + φzz} = Fx{0}

The Fourier transform is a linear operator.

Fx{φxx}+ Fx{φzz} = 0

Transform the derivatives with the relations above.

(ik)2Φ +
d2Φ

dz2
= 0

Expand the coefficient of Φ.

−k2Φ +
d2Φ

dz2
= 0

Bring the term with Φ to the right side.

d2Φ

dz2
= k2Φ
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We can write the solution to this ODE in terms of exponentials.

Φ(k, z, t) = A(k, t)e|k|z +B(k, t)e−|k|z

We can determine one of the constants here by using the boundary condition, φz → 0 as
z → −∞. Take the Fourier transform with respect to x of both sides of it.

Fx

{
lim

z→−∞

∂φ

∂z

}
= Fx{0}

Bring the Fourier transform inside the limit.

lim
z→−∞

Fx

{
∂φ

∂z

}
= 0

Transform the partial derivative.

lim
z→−∞

dΦ

dz
= 0 (1)

To use this condition, differentiate Φ(k, z, t) with respect to z.

dΦ

dz
= A(k, t)|k|e|k|z −B(k, t)|k|e−|k|z

In order for equation (1) to be satisfied, we require that B(k, t) = 0. So we have

Φ(k, z, t) = A(k, t)e|k|z.

Take the Fourier transform with respect to x of the boundary conditions now.

Fx{φz − ηt} = Fx{0}
Fx{φt + gη} = Fx{0}

Use the linearity property.

Fx{φz} − Fx{ηt} = 0

Fx{φt}+ gFx{η} = 0

Transform the partial derivatives.

dΦ

dz
− dH

dt
= 0

dΦ

dt
+ gH = 0

Plug in the expression for Φ into these equations. These two equations hold at the boundary, so
we have to evaluate these terms at z = 0.

A(k, t)|k| − dH

dt
= 0 (2)

∂A

∂t
+ gH = 0
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We now have a system of two equations for two unknowns, A and H. Differentiate both sides of
the first equation with respect to t.

∂A

∂t
|k| − d2H

dt2
= 0

∂A

∂t
+ gH = 0

Solve the first equation for At

∂A

∂t
=

1

|k|
d2H

dt2
,

and plug it into the second equation.

1

|k|
d2H

dt2
+ gH = 0

Multiply both sides by |k|.
d2H

dt2
+ g|k|H = 0

We can write the solution to this ODE in terms of sine and cosine.

H(k, t) = C(k) cos
√
g|k|t+D(k) sin

√
g|k|t

We can determine one of the constants here by using the initial condition, η(x, 0) = Pδ(x). Take
the Fourier transform of both sides of it with respect to x.

Fx{η(x, 0)} = Fx{Pδ(x)}

H(k, 0) =
P√
2π

Using this condition gives us

H(k, 0) = C(k) =
P√
2π
,

so we have

H(k, t) =
P√
2π

cos
√
g|k|t+D(k) sin

√
g|k|t.

Now we can solve equation (2) for A(k, t).

A(k, t)|k| − dH

dt
= 0 → A(k, t) =

1

|k|
dH

dt

Evaluate the derivative of H(k, t) with respect to t and substitute it.

A(k, t) =
1

|k|

[
− P√

2π

√
g|k| sin

√
g|k|t+D(k)

√
g|k| cos

√
g|k|t

]
We will use the final condition, φ(x, 0, 0) = 0, now to determine D(k). Take the Fourier transform
with respect to x of both sides of it.

Fx{φ(x, 0, 0)} = Fx{0}
Φ(k, 0, 0) = 0
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Plug z = 0 and t = 0 into the expression we found for Φ.

A(k, 0) = 0

Using this condition, we get

A(k, 0) =
1

|k|
[D(k)

√
g|k|] = 0 → D(k) = 0.

Therefore,

Φ(k, z, t) =
1

|k|

[
− P√

2π

√
g|k| sin

√
g|k|t

]
e|k|z

H(k, t) =
P√
2π

cos
√
g|k|t.

All we need to do now is take the inverse Fourier transform of Φ and H, and we’ll be done. It is
defined as

F−1{Φ(k, z, t)} = φ(x, z, t) =
1√
2π

ˆ ∞
−∞

Φ(k, z, t)eikx dk.

Plugging Φ and H into the definition, we get

φ(x, z, t) =
1√
2π

ˆ ∞
−∞

1

|k|

[
− P√

2π

√
g|k| sin

√
g|k|t

]
e|k|zeikx dk

η(x, t) =
1√
2π

ˆ ∞
−∞

P√
2π

cos
√
g|k|t eikx dk.

Bring the constants out in front of the integral to obtain the final answer.

φ(x, z, t) = − P
2π

√
g

ˆ ∞
−∞

sin
√
g|k|t√
|k|

e|k|z+ikx dk

η(x, t) =
P

2π

ˆ ∞
−∞

cos
√
g|k|t eikx dk

This answer for φ is in disagreement with the answer at the back of the book.
√
g is in the

denominator with 2π there, but I believe this is a typo.
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