Exercise 17

Find the solution of the Cauchy-Poisson problem (Debnath 1994, p. 83) in inviscid water of infinite depth which is governed by

$$
\left.\begin{array}{l}
\phi_{x x}+\phi_{z z}=0, \quad-\infty<x<\infty,-\infty<z \leq 0, t>0, \\
\phi_{z}-\eta_{t}=0, \\
\phi_{t}+g \eta=0
\end{array}\right\} \quad \text { on } z=0, t>0, ~ \begin{aligned}
& \phi_{z} \rightarrow 0 \text { as } z \rightarrow-\infty . \\
& \phi(x, 0,0)=0, \quad \text { and } \eta(x, 0)=P \delta(x),
\end{aligned}
$$

where $\phi=\phi(x, z, t)$ is the velocity potential, $\eta(x, t)$ is the free surface elevation, and P is a constant.
Derive the asymptotic solution for the free surface elevation as $t \rightarrow \infty$.

Solution

The PDEs for ϕ and η are defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve them. We define the Fourier transform with respect to x here as

$$
\mathcal{F}_{x}\{\phi(x, z, t)\}=\Phi(k, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \phi(x, z, t) d x
$$

which means the partial derivatives of ϕ with respect to x, z, and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial x^{n}}\right\}=(i k)^{n} \Phi(k, z, t) \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial z^{n}}\right\}=\frac{d^{n} \Phi}{d z^{n}} \\
& \mathcal{F}_{x}\left\{\frac{\partial^{n} \phi}{\partial t^{n}}\right\}=\frac{d^{n} \Phi}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the first PDE.

$$
\mathcal{F}_{x}\left\{\phi_{x x}+\phi_{z z}\right\}=\mathcal{F}_{x}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}_{x}\left\{\phi_{x x}\right\}+\mathcal{F}_{x}\left\{\phi_{z z}\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Expand the coefficient of Φ.

$$
-k^{2} \Phi+\frac{d^{2} \Phi}{d z^{2}}=0
$$

Bring the term with Φ to the right side.

$$
\frac{d^{2} \Phi}{d z^{2}}=k^{2} \Phi
$$

We can write the solution to this ODE in terms of exponentials.

$$
\Phi(k, z, t)=A(k, t) e^{|k| z}+B(k, t) e^{-|k| z}
$$

We can determine one of the constants here by using the boundary condition, $\phi_{z} \rightarrow 0$ as $z \rightarrow-\infty$. Take the Fourier transform with respect to x of both sides of it.

$$
\mathcal{F}_{x}\left\{\lim _{z \rightarrow-\infty} \frac{\partial \phi}{\partial z}\right\}=\mathcal{F}_{x}\{0\}
$$

Bring the Fourier transform inside the limit.

$$
\lim _{z \rightarrow-\infty} \mathcal{F}_{x}\left\{\frac{\partial \phi}{\partial z}\right\}=0
$$

Transform the partial derivative.

$$
\begin{equation*}
\lim _{z \rightarrow-\infty} \frac{d \Phi}{d z}=0 \tag{1}
\end{equation*}
$$

To use this condition, differentiate $\Phi(k, z, t)$ with respect to z.

$$
\frac{d \Phi}{d z}=A(k, t)|k| e^{|k| z}-B(k, t)|k| e^{-|k| z}
$$

In order for equation (1) to be satisfied, we require that $B(k, t)=0$. So we have

$$
\Phi(k, z, t)=A(k, t) e^{|k| z} .
$$

Take the Fourier transform with respect to x of the boundary conditions now.

$$
\begin{aligned}
\mathcal{F}_{x}\left\{\phi_{z}-\eta_{t}\right\} & =\mathcal{F}_{x}\{0\} \\
\mathcal{F}_{x}\left\{\phi_{t}+g \eta\right\} & =\mathcal{F}_{x}\{0\}
\end{aligned}
$$

Use the linearity property.

$$
\begin{aligned}
& \mathcal{F}_{x}\left\{\phi_{z}\right\}-\mathcal{F}_{x}\left\{\eta_{t}\right\}=0 \\
& \mathcal{F}_{x}\left\{\phi_{t}\right\}+g \mathcal{F}_{x}\{\eta\}=0
\end{aligned}
$$

Transform the partial derivatives.

$$
\begin{aligned}
& \frac{d \Phi}{d z}-\frac{d H}{d t}=0 \\
& \frac{d \Phi}{d t}+g H=0
\end{aligned}
$$

Plug in the expression for Φ into these equations. These two equations hold at the boundary, so we have to evaluate these terms at $z=0$.

$$
\begin{align*}
A(k, t)|k|-\frac{d H}{d t} & =0 \tag{2}\\
\frac{\partial A}{\partial t}+g H & =0
\end{align*}
$$

We now have a system of two equations for two unknowns, A and H. Differentiate both sides of the first equation with respect to t.

$$
\begin{aligned}
\frac{\partial A}{\partial t}|k|-\frac{d^{2} H}{d t^{2}} & =0 \\
\frac{\partial A}{\partial t}+g H & =0
\end{aligned}
$$

Solve the first equation for A_{t}

$$
\frac{\partial A}{\partial t}=\frac{1}{|k|} \frac{d^{2} H}{d t^{2}},
$$

and plug it into the second equation.

$$
\frac{1}{|k|} \frac{d^{2} H}{d t^{2}}+g H=0
$$

Multiply both sides by $|k|$.

$$
\frac{d^{2} H}{d t^{2}}+g|k| H=0
$$

We can write the solution to this ODE in terms of sine and cosine.

$$
H(k, t)=C(k) \cos \sqrt{g|k|} t+D(k) \sin \sqrt{g|k|} t
$$

We can determine one of the constants here by using the initial condition, $\eta(x, 0)=P \delta(x)$. Take the Fourier transform of both sides of it with respect to x.

$$
\begin{aligned}
\mathcal{F}_{x}\{\eta(x, 0)\} & =\mathcal{F}_{x}\{P \delta(x)\} \\
H(k, 0) & =\frac{P}{\sqrt{2 \pi}}
\end{aligned}
$$

Using this condition gives us

$$
H(k, 0)=C(k)=\frac{P}{\sqrt{2 \pi}},
$$

so we have

$$
H(k, t)=\frac{P}{\sqrt{2 \pi}} \cos \sqrt{g|k|} t+D(k) \sin \sqrt{g|k|} t .
$$

Now we can solve equation (2) for $A(k, t)$.

$$
A(k, t)|k|-\frac{d H}{d t}=0 \quad \rightarrow \quad A(k, t)=\frac{1}{|k|} \frac{d H}{d t}
$$

Evaluate the derivative of $H(k, t)$ with respect to t and substitute it.

$$
A(k, t)=\frac{1}{|k|}\left[-\frac{P}{\sqrt{2 \pi}} \sqrt{g|k|} \sin \sqrt{g|k|} t+D(k) \sqrt{g|k|} \cos \sqrt{g|k| t}\right]
$$

We will use the final condition, $\phi(x, 0,0)=0$, now to determine $D(k)$. Take the Fourier transform with respect to x of both sides of it.

$$
\begin{aligned}
\mathcal{F}_{x}\{\phi(x, 0,0)\} & =\mathcal{F}_{x}\{0\} \\
\Phi(k, 0,0) & =0
\end{aligned}
$$

Plug $z=0$ and $t=0$ into the expression we found for Φ.

$$
A(k, 0)=0
$$

Using this condition, we get

$$
A(k, 0)=\frac{1}{|k|}[D(k) \sqrt{g|k|}]=0 \quad \rightarrow \quad D(k)=0 .
$$

Therefore,

$$
\begin{aligned}
\Phi(k, z, t) & =\frac{1}{|k|}\left[-\frac{P}{\sqrt{2 \pi}} \sqrt{g|k|} \sin \sqrt{g|k|} t\right] e^{|k| z} \\
H(k, t) & =\frac{P}{\sqrt{2 \pi}} \cos \sqrt{g|k|} t .
\end{aligned}
$$

All we need to do now is take the inverse Fourier transform of Φ and H, and we'll be done. It is defined as

$$
\mathcal{F}^{-1}\{\Phi(k, z, t)\}=\phi(x, z, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, z, t) e^{i k x} d k .
$$

Plugging Φ and H into the definition, we get

$$
\begin{aligned}
\phi(x, z, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{|k|}\left[-\frac{P}{\sqrt{2 \pi}} \sqrt{g|k|} \sin \sqrt{g|k| t}\right] e^{|k| z} e^{i k x} d k \\
\eta(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{P}{\sqrt{2 \pi}} \cos \sqrt{g|k|} t e^{i k x} d k .
\end{aligned}
$$

Bring the constants out in front of the integral to obtain the final answer.

$$
\begin{aligned}
\phi(x, z, t) & =-\frac{P}{2 \pi} \sqrt{g} \int_{-\infty}^{\infty} \frac{\sin \sqrt{g|k|} t}{\sqrt{|k|}} e^{|k| z+i k x} d k \\
\eta(x, t) & =\frac{P}{2 \pi} \int_{-\infty}^{\infty} \cos \sqrt{g|k|} e^{i k x} d k
\end{aligned}
$$

This answer for ϕ is in disagreement with the answer at the back of the book. \sqrt{g} is in the denominator with 2π there, but I believe this is a typo.

